

Mountain Glacier Segmentation Analysis

Merrill Storch, Grace Stroh,

Eddie Robbins, Dr. R. White, and Dr. N. Nezamoddin

Outline

- ≻ Introduction
- ≻ Data
- ≻ Trial Methods
- ≻ Final Method
- \succ Results
- ➤ Conclusions
- ≻ Q&A

Gorner Glacier https://www.flickr.com/photos/120861725@N07/22485109480

Introduction

Franz Josef Glacier https://www.flickr.com/photos/vjosullivan/33299673685

- Indicators of climate change
- ➤ Adverse effects of melting
 - Water security
 - Sea level rise
- Difficult to quantify variation

Main Objective

Develop glacier area image segmentation method

> Quantify error with respect to a ground truth

Relevant Literature

TAKEAWAYS:

- More automation needed
- 1-dimension is insufficient

Localization of mountain glacier termini in Landsat multi-spectral images [1]

- Terminus point measurement
 - Manual
 - Flow path
 - Inflection point
 - 1-Dimensional

Terminus Point Measurement

Relevant Literature

TAKEAWAYS:

- Debris is difficult to segment
- Manual cleaning needed

On the accuracy of glacier outlines derived from remote-sensing data [2]

- Accuracy measurement of ice segmentation using remote sensing
 - Debris-covered ice had up to 30% error
 - Manual adjustment needed

Manual Outlines of Guslarferner, Austrian Alps

Relevant Literature

TAKEAWAYS:

- DEMS are more accurate than 2D models
- More computationally expensive

Glacier mapping in high mountains using DEMs, Landsat and ASTER data [3]

- Combination of satellite and Digital Elevation Models (DEMs)
 - Semi-automated method
 - DEMs increased accuracy
 - Dependent on resolution

Landsat Segmentation vs Topographic Map

Data

Gorner Glacier https://cdn.pixabay.com/photo/2020/05/05/13/36/gomer-glacier-5133145___480.jpg

Data

Global Land Ice
 Measurements from
 Space (GLIMS)
 outlines from 2000
 [4]

Slide 9				
1	cite this? Grace Stroh, 7/7/2022			

Data

- Gorner: Landsat
 4-5 image from
 2000 [5]
- Franz Josef:
 Landsat 7 image
 from 2001 [6]

https://landsat.gsfc.nasa.gov/about/landsat-timeline/

Data Challenges

Different Paths and Alignments

Franz Josef with Shadows

Franz Josef with Cloud Cover

Gorner Glacier https://cdn.pixabay.com/photo/2020/05/05/13/36/gorner-glacier-5133145__480.jpg

- ➤ Edge Detection
 - Canny & Sobel
 - Threshold: minimum pixel gradient
- ➤ Drawbacks:
 - Manual
 - Inaccurate

Lowest Threshold

Highest Threshold

- ➢ Region Growing
 - Seed point Ο
 - Mean-based 0
 - Threshold: number 0 of iterations
- > Drawbacks
 - Manual Ο
 - Inconsistent \bigcirc

20 Iterations

40 Iterations

60 Iterations

- ≻ Super Pixels
 - Smallest unit
 - Threshold: how many pixels
- > Drawbacks
 - Manual
 - Inaccurate

800 Super Pixels Applied to New Zealand Scene

- ➤ Freehand Drawing
 - Widely accepted as most accurate [7]
- ≻ Drawbacks
 - Manual
 - Internal variation (95 pixels, ~3000 pixels)

Hand-drawn Masks of Franz Josef

Final Method

L*a*b* Color Space

Franz Josef Glacier https://www.getyourguide.com/franz-josef-glacier-ka-roimata-o-hine-hukatere-193428/extreme-sports-adrenaline-tc85/

Landsat Bands

Wavelength	
0.45-0.52	
0.52-0.60	
0.63-0.69	
0.77-0.90	
1.55-1.75	
10.40-12.50	
2.09-2.35	
.5290	

Landsat 4–5 and 7 Bands https://www.usgs.gov/media/images/landsat-4-5-tm-andlandsat-7-etm-bands-and-their-uses

Electromagnetic Spectrum https://commons.wikimedia.org/wiki/File:EM_spectrum.svg

Methods (Pre-Processing Landsat)

Methods (Pre-Processing GLIMS)

GLIMS Outline On Image

Franz Josef (Shadows within GLIMS)

Gorner (Debris within GLIMS)

L*a*b* Color Space

Methods (L*a*b* Color Space)

Step 1: Manual Threshold Adjustment

Same Threshold Over Time

Franz Josef a* value = -7.501

Jan 1990

Dec 2003

Feb 2007

Jan 2010

Gorner a* value = 8.5150

July 1990

July 2003

Aug 2006

June 2008

July 2010

Methods (L*a*b* Color Space)

Step 2: Automatic a* Channel Threshold Iteration

Original Threshold Results

Segmentation Closest to GLIMS

Segmentation After Too Many Iterations

Methods (L*a*b* Color Space)

Step 2b: Selecting Minimum Error

Results

Franz Josef GLIMS Outline Over Error (21.71% error)

Gorner GLIMS Outline Over Error (19.87% error)

Conclusions

- It is difficult to differentiate mountain and debriscovered ice.
- 2. Debris-covered glaciers require "more complex processing" [2].
- 3. L*a*b* segments visible ice well.

3D merge of Sentinel 2 images with DTED and GLIMS

Future Goals

3D merge of Sentinel 2 images with DTED and GLIMS

- > Merge with DEMs
- Quantify error with respect to visible ice
- Apply best L*a*b* threshold to a collection of images

References

- (1) Kachouie, N.N., et al. Localization of mountain glacier termini in Landsat multi-spectral images. Pattern Recognition Lett. (2012)
- (2) Paul, F., Barrand, N., Baumann, S., Berthier, E., Bolch, T., Casey, K., . . . Winsvold, S. (2013). On the accuracy of glacier outlines derived from remotesensing data. *Annals of Glaciology*, 54(63), 171-182. doi:10.3189/2013AoG63A296
- (3) Bolch, Tobias; Kamp, Ulrich (2005). *Glacier mapping in high mountains using DEMs, Landsat and ASTER data.* In: 8 th International Symposium on High Mountain Remote Sensing Cartography, La Paz (Bolivien), 20 March 2005 27 March 2005. Karl-Franzens–Universität Graz, 37–48.
- (4) GLIMS and NSIDC (2005, updated 2018): Global Land Ice Measurements from Space glacier database. Compiled and made available by the international GLIMS community and the National Snow and Ice Data Center, Boulder CO, U.S.A.
- (5) U.S. Geological Survey, 2000, Landsat 4-5 Dataset, accessed June 29, 2022 at URL https://earthexplorer.usgs.gov/
- (6) U.S. Geological Survey, 2001, Landsat 7 Dataset, accessed June 29, 2022 at URL <u>https://earthexplorer.usgs.gov/</u>
- (7) Kutuzov, S., & Shahgedanova, M. (2009). Glacier retreat and climatic variability in the eastern Terskey–Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. *Global and Planetary Change*, 69(1-2), 59–70.
- (8) Ly, B., Dyer, E. B., Feig, J. L., Chien, A. L., & Del Bino, S. (2020). Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. *The Journal of investigative dermatology*, 140(1), 3–12.e1. https://doi.org/10.1016/j.jid.2019.11.003

Thank You Questions?

